Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Int ; 186: 108587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579450

RESUMEN

Air pollution is a key global environmental problem raising human health concern. It is essential to comprehensively assess the long-term characteristics of air pollution and the resultant health impacts. We first assessed the global trends of fine particulate matter (PM2.5) during 1980-2020 using a monthly global PM2.5 reanalysis dataset, and evaluated their association with three types of climate variability including El Niño-Southern Oscillation, Indian Ocean Dipole and North Atlantic Oscillation. We then estimated PM2.5-attributable premature deaths using integrated exposure-response functions. Results show a significant increasing trend of ambient PM2.5 during 1980-2020 due to increases in anthropogenic emissions. Ambient PM2.5 caused a total of âˆ¼ 135 million premature deaths globally during the four decades. Occurrence of air pollution episodes was strongly associated with climate variability, which were associated with up to 14 % increase in annual global PM2.5-attributable premature deaths.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Salud Global , Material Particulado , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Cambio Climático , Exposición a Riesgos Ambientales/estadística & datos numéricos , Clima , Mortalidad Prematura
2.
Earths Future ; 10(11): e2022EF002751, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36590252

RESUMEN

Sea level rise (SLR) is a long-lasting consequence of climate change because global anthropogenic warming takes centuries to millennia to equilibrate for the deep ocean and ice sheets. SLR projections based on climate models support policy analysis, risk assessment and adaptation planning today, despite their large uncertainties. The central range of the SLR distribution is estimated by process-based models. However, risk-averse practitioners often require information about plausible future conditions that lie in the tails of the SLR distribution, which are poorly defined by existing models. Here, a community effort combining scientists and practitioners builds on a framework of discussing physical evidence to quantify high-end global SLR for practitioners. The approach is complementary to the IPCC AR6 report and provides further physically plausible high-end scenarios. High-end estimates for the different SLR components are developed for two climate scenarios at two timescales. For global warming of +2°C in 2100 (RCP2.6/SSP1-2.6) relative to pre-industrial values our high-end global SLR estimates are up to 0.9 m in 2100 and 2.5 m in 2300. Similarly, for a (RCP8.5/SSP5-8.5), we estimate up to 1.6 m in 2100 and up to 10.4 m in 2300. The large and growing differences between the scenarios beyond 2100 emphasize the long-term benefits of mitigation. However, even a modest 2°C warming may cause multi-meter SLR on centennial time scales with profound consequences for coastal areas. Earlier high-end assessments focused on instability mechanisms in Antarctica, while here we emphasize the importance of the timing of ice shelf collapse around Antarctica. This is highly uncertain due to low understanding of the driving processes. Hence both process understanding and emission scenario control high-end SLR.

3.
Science ; 368(6495): 1118-1121, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32499441

RESUMEN

The response of mangroves to high rates of relative sea level rise (RSLR) is poorly understood. We explore the limits of mangrove vertical accretion to sustained periods of RSLR in the final stages of deglaciation. The timing of initiation and rate of mangrove vertical accretion were compared with independently modeled rates of RSLR for 78 locations. Mangrove forests expanded between 9800 and 7500 years ago, vertically accreting thick sequences of organic sediments at a rate principally driven by the rate of RSLR, representing an important carbon sink. We found it very likely (>90% probability) that mangroves were unable to initiate sustained accretion when RSLR rates exceeded 6.1 millimeters per year. This threshold is likely to be surpassed on tropical coastlines within 30 years under high-emissions scenarios.


Asunto(s)
Elevación del Nivel del Mar , Humedales
4.
Science ; 349(6244): aaa4019, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26160951

RESUMEN

Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records.

6.
Philos Trans A Math Phys Eng Sci ; 364(1841): 973-91, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16537151

RESUMEN

This paper provides a brief overview of the transfer function approach to sea-level reconstruction. Using the example of two overlapping sediment cores from the North Norfolk coast, UK, the advantages and limitations of the transfer function methodology are examined. While the selected cores are taken from different sites, and display contrasting patterns of sedimentation, the foraminiferal transfer function distils comparable records of relative sea-level change from both sequences. These reconstructions are consistent with existing sea-level index points from the region but produce a more detailed record of relative sea-level change. Transfer functions can extract sea-level information from a wider range of sedimentary sub-environments. This increases the amount of data that can be collected from coastal deposits and improves record resolution. The replicability of the transfer function methodology, coupled with the sequential nature of the data it produces, assists in the compilation and analysis of sea-level records from different sites. This technique has the potential to bridge the gap between short-term (instrumental) and long-term (geological or geophysical) records of sea-level change.


Asunto(s)
Recolección de Datos/métodos , Sedimentos Geológicos/análisis , Oceanografía/métodos , Agua de Mar , Factores de Edad , Altitud , Animales , Eucariontes/química , Océanos y Mares , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...